原文链接:http://tecdat.cn/?p=997

最近我们被客户要求撰写关于药物配伍的研究报告,包括一些图形和统计输出。

方剂药效与剂量的关系中药不传之秘在于剂量中药配伍规律。拓端数据使用数据挖掘技术对海量的在线医院药物复方历史数据进行智能分析,并从中找出药物配伍的规律

业务挑战

中医传承过程中,关于生理、病因病机以及疾病的表现和发展规律,都容易记载在书上,也容易理解和传承。然而随着医药科技的不断进步,新特药品的的种类的不断出现,给药物配伍又一次新挑战。同时,为了探索昂贵中药材是否有其他廉价替代品的问题,对药物的配伍规律和性味归经描述来衡量药物的相似度,根据相似度对药物进行聚类。

药物配伍查询解决方案设计

关联规则模型

结合机器学习方法、数据清理、集成、变换和规约等技术对中医药方中原始数据进行了规范化处理,并用关联规则模型对药物配伍关系进行挖掘。

关联规则可以反映一个事物与其他事物之间的相互依存性和关联性使用关联规则挖掘算法,找到中药之间的高频组合以及强关联关系。

得到最常用的药物配伍——对支持度和置信度进行排序

规则前项 规则后项 支持度 置信度 提升度

{附子} => {桂枝} 0.1824324 0.7500000 2.413043[2]

{桂枝} => {附子} 0.1824324 0.5869565 2.413043[3]

{附子} => {白芍} 0.1689189 0.6944444 1.605903[4]

{白芍} => {附子} 0.1689189 0.3906250 1.605903[5]

{牛膝} => {杜仲} 0.1689189 0.6756757 1.754386[6]

{杜仲} => {牛膝} 0.1689189 0.4385965 1.754386[7]

{续断} => {独活} 0.1756757 0.7027027 2.418605[8]

{独活} => {续断} 0.1756757 0.6046512 2.418605[9]

{续断} => {杜仲} 0.1891892 0.7567568 1.964912[10]

用网络图对常用的药物配伍关系进行可视化

图片


点击标题查阅往期内容

图片

用SPSS Modeler的Web复杂网络对所有腧穴进行关联规则分析

图片

左右滑动查看更多

图片

01

图片

02

图片

03

图片

04

聚类模型

更好的区分不同种类的药物配伍关系——聚类

为了解决昂贵中药材的廉价替代品问题,对药物的配伍规律和性味归经描述来衡量药物的相似度,根据相似度对药物进行聚类。通过理疗措施之间的相似性进行聚类,相当于治疗方案空间上的粗粒化。

网络图对每个种类进行可视化

图片

图片

图片

药物配伍查询系统的实现

通过建立适用于临床的药物配伍查询系统,方便医务人员适时适时查询药物配伍及药品信息,促进临床合理用药。

图片

最后,随着政府、企业、科研机构加大对智慧医院精准医疗的资源投入,大数据将持续发挥精准医疗发展助推器作用,推动精准医疗产业发展。



图片

本文摘选 R语言用关联规则和聚类模型挖掘处方数据探索药物配伍中的规律 ,点击“阅读原文”获取全文完整资料。


点击标题查阅往期内容

用SPSS Modeler的Web复杂网络对所有腧穴进行关联规则分析
PYTHON在线零售数据关联规则挖掘APRIORI算法数据可视化
R语言关联规则模型(Apriori算法)挖掘杂货店的交易数据与交互可视化
R语言关联挖掘实例(购物篮分析)
python关联规则学习:FP-Growth算法对药品进行“菜篮子”分析
基于R的FP树fp growth 关联数据挖掘技术在煤矿隐患管理
python关联规则学习:FP-Growth算法对药品进行“菜篮子”分析
通过Python中的Apriori算法进行关联规则挖掘
Python中的Apriori关联算法-市场购物篮分析
R语言用关联规则和聚类模型挖掘处方数据探索药物配伍中的规律
在R语言中轻松创建关联网络
python主题建模可视化LDA和T-SNE交互式可视化
R语言时间序列数据指数平滑法分析交互式动态可视化
用R语言制作交互式图表和地图
如何用r语言制作交互可视化报告图表K-means和层次聚类分析癌细胞系微阵列数据和树状图可视化比较
KMEANS均值聚类和层次聚类:亚洲国家地区生活幸福质量异同可视化分析和选择最佳聚类数
PYTHON实现谱聚类算法和改变聚类簇数结果可视化比较
有限混合模型聚类FMM、广义线性回归模型GLM混合应用分析威士忌市场和研究专利申请数据
R语言多维数据层次聚类散点图矩阵、配对图、平行坐标图、树状图可视化城市宏观经济指标数据
r语言有限正态混合模型EM算法的分层聚类、分类和密度估计及可视化
Python Monte Carlo K-Means聚类实战研究
R语言k-Shape时间序列聚类方法对股票价格时间序列聚类
R语言对用电负荷时间序列数据进行K-medoids聚类建模和GAM回归
R语言谱聚类、K-MEANS聚类分析非线性环状数据比较
R语言实现k-means聚类优化的分层抽样(Stratified Sampling)分析各市镇的人口
R语言聚类有效性:确定最优聚类数分析IRIS鸢尾花数据和可视化Python、R对小说进行文本挖掘和层次聚类可视化分析案例
R语言k-means聚类、层次聚类、主成分(PCA)降维及可视化分析鸢尾花iris数据集
R语言有限混合模型(FMM,finite mixture model)EM算法聚类分析间歇泉喷发时间
R语言用温度对城市层次聚类、kmean聚类、主成分分析和Voronoi图可视化
R语言k-Shape时间序列聚类方法对股票价格时间序列聚类
R语言中的SOM(自组织映射神经网络)对NBA球员聚类分析
R语言复杂网络分析:聚类(社区检测)和可视化
R语言中的划分聚类模型
基于模型的聚类和R语言中的高斯混合模型
r语言聚类分析:k-means和层次聚类
SAS用K-Means 聚类最优k值的选取和分析
用R语言进行网站评论文本挖掘聚类
基于LDA主题模型聚类的商品评论文本挖掘
R语言鸢尾花iris数据集的层次聚类分析
R语言对用电负荷时间序列数据进行K-medoids聚类建模和GAM回归
R语言聚类算法的应用实例


拓端tecdat
195 声望46 粉丝