我写了一个文本分类程序。当我运行该程序时,它崩溃并出现错误,如以下屏幕截图所示:
ValueError:当 n_samples=0,test_size=0.2 且 train_size=None 时,生成的训练集将为空。调整上述任何参数。
这是我的代码:
from sklearn.model_selection import train_test_split
from gensim.models.word2vec import Word2Vec
from sklearn.preprocessing import scale
from sklearn.linear_model import SGDClassifier
import nltk, string, json
import numpy as np
def cleanText(corpus):
reviews = []
for dd in corpus:
#for d in dd:
try:
words = nltk.word_tokenize(dd['description'])
words = [w.lower() for w in words]
reviews.append(words)
#break
except:
pass
return reviews
with open('C:\\NLP\\bad.json') as fin:
text = json.load(fin)
neg_rev = cleanText(text)
with open('C:\\NLP\\good.json') as fin:
text = json.load(fin)
pos_rev = cleanText(text)
#1 for positive sentiment, 0 for negative
y = np.concatenate((np.ones(len(pos_rev)), np.zeros(len(neg_rev))))
x_train, x_test, y_train, y_test = train_test_split(np.concatenate((pos_rev, neg_rev)), y, test_size=0.2)
我正在使用的数据可在此处获得:
我将如何解决这个错误?
原文由 Silver 发布,翻译遵循 CC BY-SA 4.0 许可协议
遇到同样的错误:
ValueError: With n_samples=0, test_size=0.2 and train_size=None, the resulting train set will be empty. Adjust any of the aforementioned parameters.
在我的例子中,数据路径无效。检查加载文件的路径是否存在,或者读取文件的变量是否包含任何数据。