我有一个 Keras
模型,我正在尝试导出并在不同的 python 代码中使用。
这是我的代码:
from keras.models import Sequential
from keras.layers import Dense, Embedding, LSTM, GRU, Flatten, Dropout, Lambda
from keras.layers.embeddings import Embedding
import tensorflow as tf
EMBEDDING_DIM = 100
model = Sequential()
model.add(Embedding(vocab_size, 300, weights=[embedding_matrix], input_length=max_length, trainable=False))
model.add(Lambda(lambda x: tf.reduce_mean(x, axis=1)))
model.add(Dense(8, input_dim=4, activation='relu'))
model.add(Dense(3, activation='softmax'))
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
model.fit(X_train_pad, y_train, batch_size=128, epochs=25, validation_data=(X_val_pad, y_val), verbose=2)
model.save('my_model.h5')
在 另一个文件 中,当我导入 my_model.h5
时:
from keras.models import load_model
from keras.layers import Lambda
import tensorflow as tf
def learning(test_samples):
model = load_model('my_model.h5')
#ERROR HERE
#rest of the code
错误如下:
in <lambda>
model.add(Lambda(lambda x: tf.reduce_mean(x, axis=1)))
NameError: name 'tf' is not defined
经过研究,我发现 我在我的模型中使用了 lambda
是这个问题的原因,但我添加了这些参考并没有帮助:
from keras.models import load_model
from keras.layers import Lambda
import tensorflow as tf
可能是什么问题呢?
谢谢
原文由 HelpASisterOut 发布,翻译遵循 CC BY-SA 4.0 许可协议
加载模型时,您需要 显式处理自定义对象或自定义图层(CTRL+f 处理自定义图层 的文档):