预测期间数据规范化在keras中如何工作?

新手上路,请多包涵

我看到 imageDataGenerator 允许我指定不同样式的数据规范化,例如 featurewise_center、samplewise_center 等。

我从示例中看到,如果我指定了这些选项之一,那么我需要在生成器上调用 fit 方法,以允许生成器计算统计数据,例如生成器上的平均图像。

 (X_train, y_train), (X_test, y_test) = cifar10.load_data()
Y_train = np_utils.to_categorical(y_train, nb_classes)
Y_test = np_utils.to_categorical(y_test, nb_classes)

datagen = ImageDataGenerator(
    featurewise_center=True,
    featurewise_std_normalization=True,
    rotation_range=20,
    width_shift_range=0.2,
    height_shift_range=0.2,
    horizontal_flip=True)

# compute quantities required for featurewise normalization
# (std, mean, and principal components if ZCA whitening is applied)
datagen.fit(X_train)

# fits the model on batches with real-time data augmentation:
model.fit_generator(datagen.flow(X_train, Y_train, batch_size=32),
                samples_per_epoch=len(X_train), nb_epoch=nb_epoch)

我的问题是,如果我在训练期间指定了数据规范化,预测将如何工作?我看不出在框架中我什至会如何通过训练集均值/标准偏差的知识来预测以允许我自己规范化我的测试数据,但我也没有在训练代码中看到这些信息在哪里存储。

标准化所需的图像统计数据是否存储在模型中,以便在预测期间使用它们?

原文由 Alex Taylor 发布,翻译遵循 CC BY-SA 4.0 许可协议

阅读 657
2 个回答

是的 - 这是 Keras.ImageDataGenerator 的一个非常大的缺点,你无法自己提供标准化统计数据。但是 - 有一种简单的方法可以解决这个问题。

假设您有一个函数 normalize(x) 正在规范化图像 批次(请记住,生成器提供的不是简单图像而是图像数组 - 形状为 (nr_of_examples_in_batch, image_dims ..)批次,您可以制作您的自己的生成器通过使用标准化:

 def gen_with_norm(gen, normalize):
    for x, y in gen:
        yield normalize(x), y

那么你可以简单地使用 gen_with_norm(datagen.flow, normalize) 而不是 datagen.flow

Moreover - you might recover the mean and std computed by a fit method by getting it from appropriate fields in datagen (eg datagen.mean and datagen.std )。

原文由 Marcin Możejko 发布,翻译遵循 CC BY-SA 3.0 许可协议

对每个元素使用生成器的 standardize 方法。这是 CIFAR 10 的完整示例:

 #!/usr/bin/env python

import keras
from keras.datasets import cifar10
from keras.preprocessing.image import ImageDataGenerator
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten
from keras.layers import Conv2D, MaxPooling2D

# input image dimensions
img_rows, img_cols, img_channels = 32, 32, 3
num_classes = 10

batch_size = 32
epochs = 1

# The data, shuffled and split between train and test sets:
(x_train, y_train), (x_test, y_test) = cifar10.load_data()
print(x_train.shape[0], 'train samples')
print(x_test.shape[0], 'test samples')

# Convert class vectors to binary class matrices.
y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes)

model = Sequential()

model.add(Conv2D(32, (3, 3), padding='same', activation='relu',
                 input_shape=x_train.shape[1:]))
model.add(Conv2D(32, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))

model.add(Conv2D(64, (3, 3), padding='same', activation='relu'))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))

model.add(Flatten())
model.add(Dense(512, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes, activation='softmax'))

model.compile(loss='categorical_crossentropy', optimizer='rmsprop',
              metrics=['accuracy'])

x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255
x_test /= 255

datagen = ImageDataGenerator(zca_whitening=True)

# Compute principal components required for ZCA
datagen.fit(x_train)

# Apply normalization (ZCA and others)
print(x_test.shape)
for i in range(len(x_test)):
    # this is what you are looking for
    x_test[i] = datagen.standardize(x_test[i])
print(x_test.shape)

# Fit the model on the batches generated by datagen.flow().
model.fit_generator(datagen.flow(x_train, y_train,
                                 batch_size=batch_size),
                    steps_per_epoch=x_train.shape[0] // batch_size,
                    epochs=epochs,
                    validation_data=(x_test, y_test))

原文由 Martin Thoma 发布,翻译遵循 CC BY-SA 3.0 许可协议

推荐问题