基于粒子群算法的无人机路劲规划开源,免费matlab程序
程序代码
以下是基于粒子群算法(PSO)的无人机路径规划MATLAB实现建议方案:
基础实现框架:
% 粒子群参数
n_particles = 50; % 粒子数量
max_iter = 100; % 最大迭代次数
w = 0.8; % 惯性权重
c1 = 2.0; % 个体学习因子
c2 = 2.0; % 群体学习因子
% 路径参数
n_points = 10; % 路径节点数
search_space = [0 100];% 三维空间范围
% 初始化粒子群
positions = rand(n_particles, 3*n_points)*(search_space(2)-search_space(1)) + search_space(1);
velocities = zeros(size(positions));
pbest_pos = positions;
pbest_val = inf(n_particles,1);
[gbest_val, gbest_idx] = min(pbest_val);
gbest_pos = pbest_pos(gbest_idx,:);
% 主循环
for iter = 1:max_iter
for i = 1:n_particles
% 计算适应度(需自定义)
fitness = calculate_fitness(positions(i,:));
% 更新个体最优
if fitness < pbest_val(i)
pbest_val(i) = fitness;
pbest_pos(i,:) = positions(i,:);
end
% 更新全局最优
if pbest_val(i) < gbest_val
gbest_val = pbest_val(i);
gbest_pos = pbest_pos(i,:);
end
% 更新速度和位置
r1 = rand(size(positions));
r2 = rand(size(positions));
velocities(i,:) = w*velocities(i,:) + ...
c1*r1.*(pbest_pos(i,:)-positions(i,:)) + ...
c2*r2.*(gbest_pos-positions(i,:));
positions(i,:) = positions(i,:) + velocities(i,:);
end
end
% 最佳路径输出
optimal_path = reshape(gbest_pos,3,n_points)';
关键函数说明:
function fitness = calculate_fitness(path)
% 将路径向量转换为3D坐标点
path_points = reshape(path,3,[])';
% 路径长度计算
path_length = sum(sqrt(sum(diff(path_points).^2,2)));
% 障碍物碰撞检测(需自定义障碍物参数)
collision_penalty = calculate_collisions(path_points);
% 综合适应度函数
fitness = path_length + 1000*collision_penalty;
end
注意:完整实现需要根据具体场景补充环境建模、约束处理等模块。File Exchange的完整实现方案通常包含可视化模块和多种约束处理机制,建议参考成熟项目进行二次开发。