多Tag检索有没有什么好的优化方案

比如淘宝。一件商品有很多tag(指的是淘宝商品列表搜索的tag,非商品本身尺寸等类型tag)。

搜索完毕,出现

产地:北京,xx,xx,xx,xx
颜色:xx,xx,xx,xx,xx,xx
等等:xx,xx,xx,xx,xx

现在的表结构:

tag:
t_id(标签id),t_name(标签名称)

tag_relation: t_id(标签id),product_id(商品id) 有木有好的查询优化方案?

想过用redis作数据索引,最后用分页后的id取MySQL数据。但是又有一个索引重建的问题。数据量少还好说。但是数据量一上去就要疯了。

想了解一下有没有什么好的方案来实现。比如考虑过sphinx,但没有想到方案。

还有一个需求就是,要所有tag下当前搜索条件所有数据的综合。

比如:选中tagname为“北京”,的数据,那么其他的tagname的数据量应该为0,且北京下属的颜色数据,比如北京下,蓝色数据为1,黑色数据为3,等等。。求方案。

阅读 5.3k
2 个回答

sphinx 定时重建索引。

如果实时性要求较高,把最近更新的商品数据放到增量索引里面,重建索引频繁点就行。

以上满足几十万商品的级别没问题。

淘宝这样的海量的商品,必然是分布式索引了

撰写回答
你尚未登录,登录后可以
  • 和开发者交流问题的细节
  • 关注并接收问题和回答的更新提醒
  • 参与内容的编辑和改进,让解决方法与时俱进
推荐问题