python的sympy怎样判断是不是复数?

import sympy
x=sympy.symbols('x')
s='x**6 + x**5 + x**4 + x**3 + x**2 + x + 1'.replace(" ","")
r=sympy.solve(s,x)
print(r)
for i in r:
    print(i)

结果是:
-cos(pi/7) - Isin(pi/7), -cos(pi/7) + Isin(pi/7), cos(2pi/7) - Isin(2pi/7), cos(2pi/7) + Isin(2pi/7), -cos(3pi/7) - Isin(3pi/7), -cos(3pi/7) + Isin(3pi/7)]
-cos(pi/7) - I*sin(pi/7)
-cos(pi/7) + I*sin(pi/7)
cos(2pi/7) - Isin(2*pi/7)
cos(2pi/7) + Isin(2*pi/7)
-cos(3pi/7) - Isin(3*pi/7)
-cos(3pi/7) + Isin(3*pi/7)
我该怎样判断-cos(3pi/7) + Isin(3*pi/7)是不是一个复数呢?

阅读 6.6k
1 个回答
  • 直接用isinstance进行
x = 2j+1
if isinstance(x, complex):
    print('X is complex')
  • 如果是numpy

直接有方法 numpy.iscomplex(x)

撰写回答
你尚未登录,登录后可以
  • 和开发者交流问题的细节
  • 关注并接收问题和回答的更新提醒
  • 参与内容的编辑和改进,让解决方法与时俱进
推荐问题