我有以下数据框:
> df1
id begin conditional confidence discoveryTechnique
0 278 56 false 0.0 1
1 421 18 false 0.0 1
> df2
concept
0 A
1 B
如何合并索引以获得:
id begin conditional confidence discoveryTechnique concept
0 278 56 false 0.0 1 A
1 421 18 false 0.0 1 B
我问是因为我的理解是 merge()
即 df1.merge(df2)
使用列进行匹配。事实上,这样做我得到:
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/usr/local/lib/python2.7/dist-packages/pandas/core/frame.py", line 4618, in merge
copy=copy, indicator=indicator)
File "/usr/local/lib/python2.7/dist-packages/pandas/tools/merge.py", line 58, in merge
copy=copy, indicator=indicator)
File "/usr/local/lib/python2.7/dist-packages/pandas/tools/merge.py", line 491, in __init__
self._validate_specification()
File "/usr/local/lib/python2.7/dist-packages/pandas/tools/merge.py", line 812, in _validate_specification
raise MergeError('No common columns to perform merge on')
pandas.tools.merge.MergeError: No common columns to perform merge on
合并索引是不好的做法吗?这是不可能的吗?如果是这样,我怎样才能将索引转移到一个名为“索引”的新列中?
原文由 brucezepplin 发布,翻译遵循 CC BY-SA 4.0 许可协议
使用
merge
,默认为内连接:或者
join
,默认是左连接:或者
concat
),默认是外连接:样品: