有人告诉我,C++ 中的模板系统在编译时是图灵完备的。 这篇文章 和 维基百科 都提到了这一点。
您能否提供一个利用此属性的计算的重要示例?
这个事实在实践中有用吗?
原文由 Federico A. Ramponi 发布,翻译遵循 CC BY-SA 4.0 许可协议
有人告诉我,C++ 中的模板系统在编译时是图灵完备的。 这篇文章 和 维基百科 都提到了这一点。
您能否提供一个利用此属性的计算的重要示例?
这个事实在实践中有用吗?
原文由 Federico A. Ramponi 发布,翻译遵循 CC BY-SA 4.0 许可协议
好吧,这是一个运行 4 状态 2 符号繁忙海狸的编译时图灵机实现
#include <iostream>
#pragma mark - Tape
constexpr int Blank = -1;
template<int... xs>
class Tape {
public:
using type = Tape<xs...>;
constexpr static int length = sizeof...(xs);
};
#pragma mark - Print
template<class T>
void print(T);
template<>
void print(Tape<>) {
std::cout << std::endl;
}
template<int x, int... xs>
void print(Tape<x, xs...>) {
if (x == Blank) {
std::cout << "_ ";
} else {
std::cout << x << " ";
}
print(Tape<xs...>());
}
#pragma mark - Concatenate
template<class, class>
class Concatenate;
template<int... xs, int... ys>
class Concatenate<Tape<xs...>, Tape<ys...>> {
public:
using type = Tape<xs..., ys...>;
};
#pragma mark - Invert
template<class>
class Invert;
template<>
class Invert<Tape<>> {
public:
using type = Tape<>;
};
template<int x, int... xs>
class Invert<Tape<x, xs...>> {
public:
using type = typename Concatenate<
typename Invert<Tape<xs...>>::type,
Tape<x>
>::type;
};
#pragma mark - Read
template<int, class>
class Read;
template<int n, int x, int... xs>
class Read<n, Tape<x, xs...>> {
public:
using type = typename std::conditional<
(n == 0),
std::integral_constant<int, x>,
Read<n - 1, Tape<xs...>>
>::type::type;
};
#pragma mark - N first and N last
template<int, class>
class NLast;
template<int n, int x, int... xs>
class NLast<n, Tape<x, xs...>> {
public:
using type = typename std::conditional<
(n == sizeof...(xs)),
Tape<xs...>,
NLast<n, Tape<xs...>>
>::type::type;
};
template<int, class>
class NFirst;
template<int n, int... xs>
class NFirst<n, Tape<xs...>> {
public:
using type = typename Invert<
typename NLast<
n, typename Invert<Tape<xs...>>::type
>::type
>::type;
};
#pragma mark - Write
template<int, int, class>
class Write;
template<int pos, int x, int... xs>
class Write<pos, x, Tape<xs...>> {
public:
using type = typename Concatenate<
typename Concatenate<
typename NFirst<pos, Tape<xs...>>::type,
Tape<x>
>::type,
typename NLast<(sizeof...(xs) - pos - 1), Tape<xs...>>::type
>::type;
};
#pragma mark - Move
template<int, class>
class Hold;
template<int pos, int... xs>
class Hold<pos, Tape<xs...>> {
public:
constexpr static int position = pos;
using tape = Tape<xs...>;
};
template<int, class>
class Left;
template<int pos, int... xs>
class Left<pos, Tape<xs...>> {
public:
constexpr static int position = typename std::conditional<
(pos > 0),
std::integral_constant<int, pos - 1>,
std::integral_constant<int, 0>
>::type();
using tape = typename std::conditional<
(pos > 0),
Tape<xs...>,
Tape<Blank, xs...>
>::type;
};
template<int, class>
class Right;
template<int pos, int... xs>
class Right<pos, Tape<xs...>> {
public:
constexpr static int position = pos + 1;
using tape = typename std::conditional<
(pos < sizeof...(xs) - 1),
Tape<xs...>,
Tape<xs..., Blank>
>::type;
};
#pragma mark - States
template <int>
class Stop {
public:
constexpr static int write = -1;
template<int pos, class tape> using move = Hold<pos, tape>;
template<int x> using next = Stop<x>;
};
#define ADD_STATE(_state_) \
template<int> \
class _state_ { };
#define ADD_RULE(_state_, _read_, _write_, _move_, _next_) \
template<> \
class _state_<_read_> { \
public: \
constexpr static int write = _write_; \
template<int pos, class tape> using move = _move_<pos, tape>; \
template<int x> using next = _next_<x>; \
};
#pragma mark - Machine
template<template<int> class, int, class>
class Machine;
template<template<int> class State, int pos, int... xs>
class Machine<State, pos, Tape<xs...>> {
constexpr static int symbol = typename Read<pos, Tape<xs...>>::type();
using state = State<symbol>;
template<int x>
using nextState = typename State<symbol>::template next<x>;
using modifiedTape = typename Write<pos, state::write, Tape<xs...>>::type;
using move = typename state::template move<pos, modifiedTape>;
constexpr static int nextPos = move::position;
using nextTape = typename move::tape;
public:
using step = Machine<nextState, nextPos, nextTape>;
};
#pragma mark - Run
template<class>
class Run;
template<template<int> class State, int pos, int... xs>
class Run<Machine<State, pos, Tape<xs...>>> {
using step = typename Machine<State, pos, Tape<xs...>>::step;
public:
using type = typename std::conditional<
std::is_same<State<0>, Stop<0>>::value,
Tape<xs...>,
Run<step>
>::type::type;
};
ADD_STATE(A);
ADD_STATE(B);
ADD_STATE(C);
ADD_STATE(D);
ADD_RULE(A, Blank, 1, Right, B);
ADD_RULE(A, 1, 1, Left, B);
ADD_RULE(B, Blank, 1, Left, A);
ADD_RULE(B, 1, Blank, Left, C);
ADD_RULE(C, Blank, 1, Right, Stop);
ADD_RULE(C, 1, 1, Left, D);
ADD_RULE(D, Blank, 1, Right, D);
ADD_RULE(D, 1, Blank, Right, A);
using tape = Tape<Blank>;
using machine = Machine<A, 0, tape>;
using result = Run<machine>::type;
int main() {
print(result());
return 0;
}
Ideone 证明运行: https ://ideone.com/MvBU3Z
说明:http: //victorkomarov.blogspot.ru/2016/03/compile-time-turing-machine.html
Github 有更多示例: https ://github.com/fnz/CTTM
原文由 Victor Komarov 发布,翻译遵循 CC BY-SA 3.0 许可协议
3 回答2k 阅读✓ 已解决
2 回答3.9k 阅读✓ 已解决
2 回答3.2k 阅读✓ 已解决
1 回答3.2k 阅读✓ 已解决
1 回答2.7k 阅读✓ 已解决
3 回答3.4k 阅读
1 回答1.6k 阅读✓ 已解决
例子
这有点有趣,但不是很实用。
要回答问题的第二部分:
这个事实在实践中有用吗?
简短的回答:有点。
长答案:是的,但前提是您是模板守护进程。
使用对其他人使用非常有用的模板元编程(即库)来产生良好的编程确实非常困难(尽管可行)。 To Help boost 甚至还有 MPL aka(元编程库)。但是尝试在你的模板代码中调试一个编译器错误,你将会经历一段漫长的艰难旅程。
但是一个很好的实际例子,它被用于有用的东西:
Scott Meyers 一直在使用模板工具对 C++ 语言进行扩展(我使用这个术语是松散的)。您可以在此处阅读他的工作“ 强制执行代码功能”