我正在尝试实现一个将图像分类为两个离散类别之一的神经网络。然而,问题是它目前总是预测任何输入为 0,我不确定为什么。
这是我的特征提取方法:
def extract(file):
# Resize and subtract mean pixel
img = cv2.resize(cv2.imread(file), (224, 224)).astype(np.float32)
img[:, :, 0] -= 103.939
img[:, :, 1] -= 116.779
img[:, :, 2] -= 123.68
# Normalize features
img = (img.flatten() - np.mean(img)) / np.std(img)
return np.array([img])
这是我的梯度下降例程:
def fit(x, y, t1, t2):
"""Training routine"""
ils = x.shape[1] if len(x.shape) > 1 else 1
labels = len(set(y))
if t1 is None or t2 is None:
t1 = randweights(ils, 10)
t2 = randweights(10, labels)
params = np.concatenate([t1.reshape(-1), t2.reshape(-1)])
res = grad(params, ils, 10, labels, x, y)
params -= 0.1 * res
return unpack(params, ils, 10, labels)
这是我的前向和后向(梯度)传播:
def forward(x, theta1, theta2):
"""Forward propagation"""
m = x.shape[0]
# Forward prop
a1 = np.vstack((np.ones([1, m]), x.T))
z2 = np.dot(theta1, a1)
a2 = np.vstack((np.ones([1, m]), sigmoid(z2)))
a3 = sigmoid(np.dot(theta2, a2))
return (a1, a2, a3, z2, m)
def grad(params, ils, hls, labels, x, Y, lmbda=0.01):
"""Compute gradient for hypothesis Theta"""
theta1, theta2 = unpack(params, ils, hls, labels)
a1, a2, a3, z2, m = forward(x, theta1, theta2)
d3 = a3 - Y.T
print('Current error: {}'.format(np.mean(np.abs(d3))))
d2 = np.dot(theta2.T, d3) * (np.vstack([np.ones([1, m]), sigmoid_prime(z2)]))
d3 = d3.T
d2 = d2[1:, :].T
t1_grad = np.dot(d2.T, a1.T)
t2_grad = np.dot(d3.T, a2.T)
theta1[0] = np.zeros([1, theta1.shape[1]])
theta2[0] = np.zeros([1, theta2.shape[1]])
t1_grad = t1_grad + (lmbda / m) * theta1
t2_grad = t2_grad + (lmbda / m) * theta2
return np.concatenate([t1_grad.reshape(-1), t2_grad.reshape(-1)])
这是我的预测功能:
def predict(theta1, theta2, x):
"""Predict output using learned weights"""
m = x.shape[0]
h1 = sigmoid(np.hstack((np.ones([m, 1]), x)).dot(theta1.T))
h2 = sigmoid(np.hstack((np.ones([m, 1]), h1)).dot(theta2.T))
return h2.argmax(axis=1)
我可以看到错误率随着每次迭代逐渐降低,通常收敛在 1.26e-05 左右。
到目前为止我已经尝试过:
- 主成分分析
- 不同的数据集(来自 sklearn 的 Iris 和来自 Coursera ML 课程的手写数字,两者都达到了大约 95% 的准确率)。但是,这两个都是批量处理的,所以我可以假设我的一般实现是正确的,但是我提取特征的方式或训练分类器的方式都有问题。
- 尝试了 sklearn 的 SGDClassifier,但它的表现并没有好多少,准确率约为 50%。那么这些功能有问题吗?
编辑:h2 的平均输出如下所示:
[0.5004899 0.45264441]
[0.50048522 0.47439413]
[0.50049019 0.46557124]
[0.50049261 0.45297816]
因此,所有验证示例的 sigmoid 输出都非常相似。
原文由 Yurii Dolhikh 发布,翻译遵循 CC BY-SA 4.0 许可协议
经过一周半的研究,我想我明白了问题所在。代码本身没有任何问题。阻止我的实施成功分类的唯一两个问题是学习时间和正确选择学习率/正则化参数。
我现在已经运行了一些学习例程,它的准确率已经达到 75%,尽管仍有很大的改进空间。