我在 gpu 上训练时保存了一个检查点。重新加载检查点并继续训练后,出现以下错误:
Traceback (most recent call last):
File "main.py", line 140, in <module>
train(model,optimizer,train_loader,val_loader,criteria=args.criterion,epoch=epoch,batch=batch)
File "main.py", line 71, in train
optimizer.step()
File "/opt/conda/lib/python3.7/site-packages/torch/autograd/grad_mode.py", line 26, in decorate_context
return func(*args, **kwargs)
File "/opt/conda/lib/python3.7/site-packages/torch/optim/sgd.py", line 106, in step
buf.mul_(momentum).add_(d_p, alpha=1 - dampening)
RuntimeError: Expected all tensors to be on the same device, but found at least two devices, cuda:0 and cpu!
我的训练代码如下:
def train(model,optimizer,train_loader,val_loader,criteria,epoch=0,batch=0):
batch_count = batch
if criteria == 'l1':
criterion = L1_imp_Loss()
elif criteria == 'l2':
criterion = L2_imp_Loss()
if args.gpu and torch.cuda.is_available():
model.cuda()
criterion = criterion.cuda()
print(f'{datetime.datetime.now().time().replace(microsecond=0)} Starting to train..')
while epoch <= args.epochs-1:
print(f'********{datetime.datetime.now().time().replace(microsecond=0)} Epoch#: {epoch+1} / {args.epochs}')
model.train()
interval_loss, total_loss= 0,0
for i , (input,target) in enumerate(train_loader):
batch_count += 1
if args.gpu and torch.cuda.is_available():
input, target = input.cuda(), target.cuda()
input, target = input.float(), target.float()
pred = model(input)
loss = criterion(pred,target)
optimizer.zero_grad()
loss.backward()
optimizer.step()
....
保存过程发生在每个 epoch 完成之后。
torch.save({'epoch': epoch,'batch':batch_count,'model_state_dict': model.state_dict(),'optimizer_state_dict':
optimizer.state_dict(),'loss': total_loss/len(train_loader),'train_set':args.train_set,'val_set':args.val_set,'args':args}, f'{args.weights_dir}/FastDepth_Final.pth')
我不明白为什么会出现此错误。 args.gpu == True
,我正在将模型、所有数据和损失函数传递给 cuda,不知何故 cpu 上仍然有一个张量,有人能找出问题所在吗?
谢谢。
原文由 Ido Do 发布,翻译遵循 CC BY-SA 4.0 许可协议
设备参数可能存在 问题: