AttributeError: 'Series' object has no attribute 'split' 发送邮件时出错

新手上路,请多包涵

我该如何解决以下错误。消息如下,用分号分隔测试邮件?理想情况下,我应该从 Sendfrom 测试中相应的电子邮件发送电子邮件。

测试

SENDFROM        Test
xx@gmail.com  xxxx@vvv.com;yyy@gggfg.com;tiitioo@ggg.com
yy@xxx.com     ggg@vvv.com;yyy@gggfg.com;vvv@ggg.com

 AttributeError: 'Series' object has no attribute 'split'

我的代码如下:

 import smtplib, ssl
from email.message import EmailMessage
import getpass
email_pass = getpass.getpass() #Office 365 password
# email_pass = input() #Office 365 password
context=ssl.create_default_context()
for idx, row in test.iterrows():

    emails = test['Test']
    sender_list  = test["SENDFROM"]

    smtp_ssl_host = 'smtp.office365.com'
    smtp_ssl_port = 587
    email_login = "xx@xx.com"
    email_from = sender_list
    email_to = emails
    msg2 = MIMEMultipart()
    msg2['Subject'] = "xxx"
    msg2['From'] = sender_list

    msg2['To'] = ", ".join(email_to.split(";"))
    msg2['X-Priority'] = '2'

    text = ("xxxx")

    msg2.attach(MIMEText(text))
    s2 = smtplib.SMTP(smtp_ssl_host, smtp_ssl_port)
    s2.starttls(context=context)
    s2.login(email_login, email_pass)


    s2.send_message(msg2)

    s2.quit()

原文由 Hummer 发布,翻译遵循 CC BY-SA 4.0 许可协议

阅读 901
2 个回答

让我们试试 str.splitstr.join

 import pandas as pd

df = pd.DataFrame({'SENDFROM': {0: 'xx@gmail.com', 1: 'yy@xxx.com'},
                   'Test': {0: 'xxxx@vvv.com;yyy@gggfg.com;tiitioo@ggg.com',
                            1: 'ggg@vvv.com;yyy@gggfg.com;vvv@ggg.com'}})

# Use str.split and str.join and astype
df['Test'] = df['Test'].str.split(';').str.join(',')

print(df.to_string())

输出:

        SENDFROM                                        Test
0  xx@gmail.com  xxxx@vvv.com,yyy@gggfg.com,tiitioo@ggg.com
1    yy@xxx.com       ggg@vvv.com,yyy@gggfg.com,vvv@ggg.com

原文由 Henry Ecker 发布,翻译遵循 CC BY-SA 4.0 许可协议

您可以使用 pandas.Series.replace(); 替换为 ,

 df['Test'] = df['Test'].replace(';', ',')

原文由 Ynjxsjmh 发布,翻译遵循 CC BY-SA 4.0 许可协议

撰写回答
你尚未登录,登录后可以
  • 和开发者交流问题的细节
  • 关注并接收问题和回答的更新提醒
  • 参与内容的编辑和改进,让解决方法与时俱进
推荐问题