如何使用 Python 解析复杂的文本文件?

新手上路,请多包涵

我正在寻找一种将复杂文本文件解析为 pandas DataFrame 的简单方法。下面是一个示例文件,我希望解析后的结果看起来像什么,以及我当前的方法。

有没有办法让它更简洁/更快/更pythonic/更具可读性?

我也把这个问题放在了 Code Review 上。

我最终写了 一篇博客文章来向初学者解释这一点

这是一个示例文件:

 Sample text

A selection of students from Riverdale High and Hogwarts took part in a quiz. This is a record of their scores.

School = Riverdale High
Grade = 1
Student number, Name
0, Phoebe
1, Rachel

Student number, Score
0, 3
1, 7

Grade = 2
Student number, Name
0, Angela
1, Tristan
2, Aurora

Student number, Score
0, 6
1, 3
2, 9

School = Hogwarts
Grade = 1
Student number, Name
0, Ginny
1, Luna

Student number, Score
0, 8
1, 7

Grade = 2
Student number, Name
0, Harry
1, Hermione

Student number, Score
0, 5
1, 10

Grade = 3
Student number, Name
0, Fred
1, George

Student number, Score
0, 0
1, 0

这是我希望解析后的结果:

                                          Name  Score
School         Grade Student number
Hogwarts       1     0                  Ginny      8
                     1                   Luna      7
               2     0                  Harry      5
                     1               Hermione     10
               3     0                   Fred      0
                     1                 George      0
Riverdale High 1     0                 Phoebe      3
                     1                 Rachel      7
               2     0                 Angela      6
                     1                Tristan      3
                     2                 Aurora      9

这是我目前解析它的方式:

 import re
import pandas as pd

def parse(filepath):
    """
    Parse text at given filepath

    Parameters
    ----------
    filepath : str
        Filepath for file to be parsed

    Returns
    -------
    data : pd.DataFrame
        Parsed data

    """

    data = []
    with open(filepath, 'r') as file:
        line = file.readline()
        while line:
            reg_match = _RegExLib(line)

            if reg_match.school:
                school = reg_match.school.group(1)

            if reg_match.grade:
                grade = reg_match.grade.group(1)
                grade = int(grade)

            if reg_match.name_score:
                value_type = reg_match.name_score.group(1)
                line = file.readline()
                while line.strip():
                    number, value = line.strip().split(',')
                    value = value.strip()
                    dict_of_data = {
                        'School': school,
                        'Grade': grade,
                        'Student number': number,
                        value_type: value
                    }
                    data.append(dict_of_data)
                    line = file.readline()

            line = file.readline()

        data = pd.DataFrame(data)
        data.set_index(['School', 'Grade', 'Student number'], inplace=True)
        # consolidate df to remove nans
        data = data.groupby(level=data.index.names).first()
        # upgrade Score from float to integer
        data = data.apply(pd.to_numeric, errors='ignore')
    return data

class _RegExLib:
    """Set up regular expressions"""
    # use https://regexper.com to visualise these if required
    _reg_school = re.compile('School = (.*)\n')
    _reg_grade = re.compile('Grade = (.*)\n')
    _reg_name_score = re.compile('(Name|Score)')

    def __init__(self, line):
        # check whether line has a positive match with all of the regular expressions
        self.school = self._reg_school.match(line)
        self.grade = self._reg_grade.match(line)
        self.name_score = self._reg_name_score.search(line)

if __name__ == '__main__':
    filepath = 'sample.txt'
    data = parse(filepath)
    print(data)

原文由 bluprince13 发布,翻译遵循 CC BY-SA 4.0 许可协议

阅读 655
2 个回答

2019 年更新(PEG 解析器):

这个答案受到了相当多的关注,所以我想添加另一种可能性,即解析选项。在这里,我们可以使用 PEG 解析器代替(例如 parsimonious )结合 NodeVisitor 类:

 from parsimonious.grammar import Grammar
from parsimonious.nodes import NodeVisitor
import pandas as pd
grammar = Grammar(
    r"""
    schools         = (school_block / ws)+

    school_block    = school_header ws grade_block+
    grade_block     = grade_header ws name_header ws (number_name)+ ws score_header ws (number_score)+ ws?

    school_header   = ~"^School = (.*)"m
    grade_header    = ~"^Grade = (\d+)"m
    name_header     = "Student number, Name"
    score_header    = "Student number, Score"

    number_name     = index comma name ws
    number_score    = index comma score ws

    comma           = ws? "," ws?

    index           = number+
    score           = number+

    number          = ~"\d+"
    name            = ~"[A-Z]\w+"
    ws              = ~"\s*"
    """
)

tree = grammar.parse(data)

class SchoolVisitor(NodeVisitor):
    output, names = ([], [])
    current_school, current_grade = None, None

    def _getName(self, idx):
        for index, name in self.names:
            if index == idx:
                return name

    def generic_visit(self, node, visited_children):
        return node.text or visited_children

    def visit_school_header(self, node, children):
        self.current_school = node.match.group(1)

    def visit_grade_header(self, node, children):
        self.current_grade = node.match.group(1)
        self.names = []

    def visit_number_name(self, node, children):
        index, name = None, None
        for child in node.children:
            if child.expr.name == 'name':
                name = child.text
            elif child.expr.name == 'index':
                index = child.text

        self.names.append((index, name))

    def visit_number_score(self, node, children):
        index, score = None, None
        for child in node.children:
            if child.expr.name == 'index':
                index = child.text
            elif child.expr.name == 'score':
                score = child.text

        name = self._getName(index)

        # build the entire entry
        entry = (self.current_school, self.current_grade, index, name, score)
        self.output.append(entry)

sv = SchoolVisitor()
sv.visit(tree)

df = pd.DataFrame.from_records(sv.output, columns = ['School', 'Grade', 'Student number', 'Name', 'Score'])
print(df)


正则表达式选项(原始答案)

好吧,第 x 次看指环王,我不得不花一些时间到最后:


分解来看,这个想法是将问题分解成几个较小的问题:

  1. 每个学校分开
  2. … 每个年级
  3. … 学生和分数
  4. …之后将它们绑定在数据框中

学校部分(请参阅 regex101.com 上的演示

 ^
School\s*=\s*(?P<school_name>.+)
(?P<school_content>[\s\S]+?)
(?=^School|\Z)


成绩部分( regex101.com 上的另一个演示

 ^
Grade\s*=\s*(?P<grade>.+)
(?P<students>[\s\S]+?)
(?=^Grade|\Z)


学生/分数部分( regex101.com 上的最后一个演示):

 ^
Student\ number,\ Name[\n\r]
(?P<student_names>(?:^\d+.+[\n\r])+)
\s*
^
Student\ number,\ Score[\n\r]
(?P<student_scores>(?:^\d+.+[\n\r])+)

其余部分是一个生成器表达式,然后将其输入 DataFrame 构造函数(连同列名)。


代码:

 import pandas as pd, re

rx_school = re.compile(r'''
    ^
    School\s*=\s*(?P<school_name>.+)
    (?P<school_content>[\s\S]+?)
    (?=^School|\Z)
''', re.MULTILINE | re.VERBOSE)

rx_grade = re.compile(r'''
    ^
    Grade\s*=\s*(?P<grade>.+)
    (?P<students>[\s\S]+?)
    (?=^Grade|\Z)
''', re.MULTILINE | re.VERBOSE)

rx_student_score = re.compile(r'''
    ^
    Student\ number,\ Name[\n\r]
    (?P<student_names>(?:^\d+.+[\n\r])+)
    \s*
    ^
    Student\ number,\ Score[\n\r]
    (?P<student_scores>(?:^\d+.+[\n\r])+)
''', re.MULTILINE | re.VERBOSE)

result = ((school.group('school_name'), grade.group('grade'), student_number, name, score)
    for school in rx_school.finditer(string)
    for grade in rx_grade.finditer(school.group('school_content'))
    for student_score in rx_student_score.finditer(grade.group('students'))
    for student in zip(student_score.group('student_names')[:-1].split("\n"), student_score.group('student_scores')[:-1].split("\n"))
    for student_number in [student[0].split(", ")[0]]
    for name in [student[0].split(", ")[1]]
    for score in [student[1].split(", ")[1]]
)

df = pd.DataFrame(result, columns = ['School', 'Grade', 'Student number', 'Name', 'Score'])
print(df)


浓缩:

 rx_school = re.compile(r'^School\s*=\s*(?P<school_name>.+)(?P<school_content>[\s\S]+?)(?=^School|\Z)', re.MULTILINE)
rx_grade = re.compile(r'^Grade\s*=\s*(?P<grade>.+)(?P<students>[\s\S]+?)(?=^Grade|\Z)', re.MULTILINE)
rx_student_score = re.compile(r'^Student number, Name[\n\r](?P<student_names>(?:^\d+.+[\n\r])+)\s*^Student number, Score[\n\r](?P<student_scores>(?:^\d+.+[\n\r])+)', re.MULTILINE)


这产生

            School Grade Student number      Name Score
0   Riverdale High     1              0    Phoebe     3
1   Riverdale High     1              1    Rachel     7
2   Riverdale High     2              0    Angela     6
3   Riverdale High     2              1   Tristan     3
4   Riverdale High     2              2    Aurora     9
5         Hogwarts     1              0     Ginny     8
6         Hogwarts     1              1      Luna     7
7         Hogwarts     2              0     Harry     5
8         Hogwarts     2              1  Hermione    10
9         Hogwarts     3              0      Fred     0
10        Hogwarts     3              1    George     0


至于 计时,这是运行一万次的结果:

 import timeit
print(timeit.timeit(makedf, number=10**4))
# 11.918397722000009 s


原文由 Jan 发布,翻译遵循 CC BY-SA 4.0 许可协议

这是我使用 split 和 pd.concat 的建议(“txt”代表问题中原始文本的副本),基本上这个想法是按组词拆分,然后连接到数据帧中,最内部的解析利用事实上,姓名和成绩采用类似于 csv 的格式。开始:

 import pandas as pd
from io import StringIO

schools = txt.lower().split('school = ')
schools_dfs = []
for school in schools[1:]:
    grades = school.split('grade = ')
    grades_dfs = []
    for grade in grades[1:]:
        features = grade.split('student number,')
        feature_dfs = []
        for feature in features[1:]:
            feature_dfs.append(pd.read_csv(StringIO(feature)))
        feature_df = pd.concat(feature_dfs, axis=1)
        feature_df['grade'] = features[0].replace('\n','')
        grades_dfs.append(feature_df)
    grades_df = pd.concat(grades_dfs)
    grades_df['school'] = grades[0].replace('\n','')
    schools_dfs.append(grades_df)
schools_df = pd.concat(schools_dfs)

schools_df.set_index(['school', 'grade'])

在此处输入图像描述

原文由 Ezer K 发布,翻译遵循 CC BY-SA 3.0 许可协议

撰写回答
你尚未登录,登录后可以
  • 和开发者交流问题的细节
  • 关注并接收问题和回答的更新提醒
  • 参与内容的编辑和改进,让解决方法与时俱进
推荐问题