我一直在 python 中使用 Keras 和 Tensorflow 练习构建和比较神经网络,但是当我想要绘制模型进行比较时,我收到一个错误:
TypeError: 'History' object is not subscriptable
这是我的三个模型的代码:
############################## Initiate model 1 ###############################
# Model 1 has no hidden layers
from keras.models import Sequential
model1 = Sequential()
# Get layers
from keras.layers import Dense
# Add first layer
n_cols = len(X.columns)
model1.add(Dense(units=n_cols, activation='relu', input_shape=(n_cols,)))
# Add output layer
model1.add(Dense(units=2, activation='softmax'))
# Compile the model
model1.compile(loss='categorical_crossentropy', optimizer='adam', metrics=
['accuracy'])
# Define early_stopping_monitor
from keras.callbacks import EarlyStopping
early_stopping_monitor = EarlyStopping(patience=2)
# Fit model
model1.fit(X, y, validation_split=0.33, epochs=30, callbacks=
[early_stopping_monitor], verbose=False)
############################## Initiate model 2 ###############################
# Model 2 has 1 hidden layer that has the mean number of nodes of input and output layer
model2 = Sequential()
# Add first layer
model2.add(Dense(units=n_cols, activation='relu', input_shape=(n_cols,)))
# Add hidden layer
import math
model2.add(Dense(units=math.ceil((n_cols+2)/2), activation='relu'))
# Add output layer
model2.add(Dense(units=2, activation='softmax'))
# Compile the model
model2.compile(loss='categorical_crossentropy', optimizer='adam', metrics=
['accuracy'])
# Fit model
model2.fit(X, y, validation_split=0.33, epochs=30, callbacks=
[early_stopping_monitor], verbose=False)
############################## Initiate model 3 ###############################
# Model 3 has 1 hidden layer that is 2/3 the size of the input layer plus the size of the output layer
model3 = Sequential()
# Add first layer
model3.add(Dense(units=n_cols, activation='relu', input_shape=(n_cols,)))
# Add hidden layer
model3.add(Dense(units=math.ceil((n_cols*(2/3))+2), activation='relu'))
# Add output layer
model3.add(Dense(units=2, activation='softmax'))
# Compile the model
model3.compile(loss='categorical_crossentropy', optimizer='adam', metrics=
['accuracy'])
# Fit model
model3.fit(X, y, validation_split=0.33, epochs=30, callbacks=
[early_stopping_monitor], verbose=False)
# Plot the models
plt.plot(model1.history['val_loss'], 'r', model2.history['val_loss'], 'b',
model3.history['val_loss'], 'g')
plt.xlabel('Epochs')
plt.ylabel('Validation score')
plt.show()
我在运行我的任何模型、获取预测概率、绘制 ROC 曲线或绘制 PR 曲线方面都没有问题。但是,当我尝试将这三条曲线绘制在一起时,我的代码的这个区域出现错误:
model1.history['val_loss']
TypeError: 'History' object is not subscriptable
有没有人有过此类错误的经验并且可以引导我做错什么?
先感谢您。
原文由 Aaron England 发布,翻译遵循 CC BY-SA 4.0 许可协议
Call to
model.fit()
returns aHistory
object that has a memberhistory
, which is of typedict
.所以你可以替换:
和
其他模型也是如此。
然后你可以使用: