在 python 中的单词上拆分语音音频文件

新手上路,请多包涵

我觉得这是一个相当普遍的问题,但我还没有找到合适的答案。我有很多人类语音的音频文件,我想打破单词,这可以通过查看波形中的暂停来启发式地完成,但是任何人都可以指出我在 python 中自动执行此操作的函数/库吗?

原文由 user3059201 发布,翻译遵循 CC BY-SA 4.0 许可协议

阅读 566
2 个回答

一种更简单的方法是使用 pydub 模块。最近添加的 静默实用程序 完成了所有繁重的工作,例如 setting up silence threaholdsetting up silence length 。等等,并大大简化了代码,而不是提到的其他方法。

这是一个演示实现,灵感来自 这里

设置:

我在文件“az.wav”中有一个音频文件,其中包含从 AZ 的口语英语字母。在当前工作目录中创建了一个子目录 splitAudio 。执行演示代码后,文件被分成 26 个单独的文件,每个音频文件存储每个音节。

观察: 一些音节被切断,可能需要修改以下参数,

min_silence_len=500

silence_thresh=-16

人们可能想根据自己的要求调整这些。

演示代码:

 from pydub import AudioSegment
from pydub.silence import split_on_silence

sound_file = AudioSegment.from_wav("a-z.wav")
audio_chunks = split_on_silence(sound_file,
    # must be silent for at least half a second
    min_silence_len=500,

    # consider it silent if quieter than -16 dBFS
    silence_thresh=-16
)

for i, chunk in enumerate(audio_chunks):

    out_file = ".//splitAudio//chunk{0}.wav".format(i)
    print "exporting", out_file
    chunk.export(out_file, format="wav")

输出:

 Python 2.7.9 (default, Dec 10 2014, 12:24:55) [MSC v.1500 32 bit (Intel)] on win32
Type "copyright", "credits" or "license()" for more information.
>>> ================================ RESTART ================================
>>>
exporting .//splitAudio//chunk0.wav
exporting .//splitAudio//chunk1.wav
exporting .//splitAudio//chunk2.wav
exporting .//splitAudio//chunk3.wav
exporting .//splitAudio//chunk4.wav
exporting .//splitAudio//chunk5.wav
exporting .//splitAudio//chunk6.wav
exporting .//splitAudio//chunk7.wav
exporting .//splitAudio//chunk8.wav
exporting .//splitAudio//chunk9.wav
exporting .//splitAudio//chunk10.wav
exporting .//splitAudio//chunk11.wav
exporting .//splitAudio//chunk12.wav
exporting .//splitAudio//chunk13.wav
exporting .//splitAudio//chunk14.wav
exporting .//splitAudio//chunk15.wav
exporting .//splitAudio//chunk16.wav
exporting .//splitAudio//chunk17.wav
exporting .//splitAudio//chunk18.wav
exporting .//splitAudio//chunk19.wav
exporting .//splitAudio//chunk20.wav
exporting .//splitAudio//chunk21.wav
exporting .//splitAudio//chunk22.wav
exporting .//splitAudio//chunk23.wav
exporting .//splitAudio//chunk24.wav
exporting .//splitAudio//chunk25.wav
exporting .//splitAudio//chunk26.wav
>>>

原文由 Anil_M 发布,翻译遵循 CC BY-SA 3.0 许可协议

使用 IBM STT 。使用 timestamps=true 你会在系统检测到它们被说出时得到单词 break up 。

还有许多其他很酷的功能,例如 word_alternatives_threshold 以获得单词的其他可能性和 word_confidence 获得系统预测单词的信心。将 word_alternatives_threshold 设置在(0.1 和 0.01)之间以获得真正的想法。

这需要登录,之后您可以使用生成的用户名和密码。

IBM STT 已经是提到的speechrecognition 模块的一部分,但是要获取单词时间戳,您需要修改函数。

提取和修改后的表单如下所示:

 def extracted_from_sr_recognize_ibm(audio_data, username=IBM_USERNAME, password=IBM_PASSWORD, language="en-US", show_all=False, timestamps=False,
                                word_confidence=False, word_alternatives_threshold=0.1):
    assert isinstance(username, str), "``username`` must be a string"
    assert isinstance(password, str), "``password`` must be a string"

    flac_data = audio_data.get_flac_data(
        convert_rate=None if audio_data.sample_rate >= 16000 else 16000,  # audio samples should be at least 16 kHz
        convert_width=None if audio_data.sample_width >= 2 else 2  # audio samples should be at least 16-bit
    )
    url = "https://stream-fra.watsonplatform.net/speech-to-text/api/v1/recognize?{}".format(urlencode({
        "profanity_filter": "false",
        "continuous": "true",
        "model": "{}_BroadbandModel".format(language),
        "timestamps": "{}".format(str(timestamps).lower()),
        "word_confidence": "{}".format(str(word_confidence).lower()),
        "word_alternatives_threshold": "{}".format(word_alternatives_threshold)
    }))
    request = Request(url, data=flac_data, headers={
        "Content-Type": "audio/x-flac",
        "X-Watson-Learning-Opt-Out": "true",  # prevent requests from being logged, for improved privacy
    })
    authorization_value = base64.standard_b64encode("{}:{}".format(username, password).encode("utf-8")).decode("utf-8")
    request.add_header("Authorization", "Basic {}".format(authorization_value))

    try:
        response = urlopen(request, timeout=None)
    except HTTPError as e:
        raise sr.RequestError("recognition request failed: {}".format(e.reason))
    except URLError as e:
        raise sr.RequestError("recognition connection failed: {}".format(e.reason))
    response_text = response.read().decode("utf-8")
    result = json.loads(response_text)

    # return results
    if show_all: return result
    if "results" not in result or len(result["results"]) < 1 or "alternatives" not in result["results"][0]:
        raise Exception("Unknown Value Exception")

    transcription = []
    for utterance in result["results"]:
        if "alternatives" not in utterance:
            raise Exception("Unknown Value Exception. No Alternatives returned")
        for hypothesis in utterance["alternatives"]:
            if "transcript" in hypothesis:
                transcription.append(hypothesis["transcript"])
    return "\n".join(transcription)

原文由 MonsieurBeilto 发布,翻译遵循 CC BY-SA 3.0 许可协议

撰写回答
你尚未登录,登录后可以
  • 和开发者交流问题的细节
  • 关注并接收问题和回答的更新提醒
  • 参与内容的编辑和改进,让解决方法与时俱进
推荐问题