熊猫:如何从周和年创建日期时间对象?

新手上路,请多包涵

我有一个数据框,它提供了两个整数列,其中包含一年中的年份和星期:

 import pandas as pd
import numpy as np
L1 = [43,44,51,2,5,12]
L2 = [2016,2016,2016,2017,2017,2017]
df = pd.DataFrame({"Week":L1,"Year":L2})

df
Out[72]:
   Week  Year
0    43  2016
1    44  2016
2    51  2016
3     2  2017
4     5  2017
5    12  2017

我需要从这两个数字创建一个日期时间对象。

我试过这个,但它抛出一个错误:

 df["DT"] = df.apply(lambda x: np.datetime64(x.Year,'Y') + np.timedelta64(x.Week,'W'),axis=1)

然后我尝试了这个,它有效但给出了错误的结果,即它完全忽略了星期:

 df["S"] = df.Week.astype(str)+'-'+df.Year.astype(str)
df["DT"] = df["S"].apply(lambda x: pd.to_datetime(x,format='%W-%Y'))

df
Out[74]:
   Week  Year        S         DT
0    43  2016  43-2016 2016-01-01
1    44  2016  44-2016 2016-01-01
2    51  2016  51-2016 2016-01-01
3     2  2017   2-2017 2017-01-01
4     5  2017   5-2017 2017-01-01
5    12  2017  12-2017 2017-01-01

我真的迷失在 Python 的 datetime 、Numpy 的 datetime64 和 pandas Timestamp

我正在使用 Python 3,如果它以任何方式相关的话。

编辑:

从 Python 3.8 开始,这个问题很容易通过 datetime.date 对象上新引入的方法解决: https ://docs.python.org/3/library/datetime.html#datetime.date.fromisocalendar

原文由 Khris 发布,翻译遵循 CC BY-SA 4.0 许可协议

阅读 361
2 个回答

尝试这个:

 In [19]: pd.to_datetime(df.Year.astype(str), format='%Y') + \
             pd.to_timedelta(df.Week.mul(7).astype(str) + ' days')
Out[19]:
0   2016-10-28
1   2016-11-04
2   2016-12-23
3   2017-01-15
4   2017-02-05
5   2017-03-26
dtype: datetime64[ns]

最初我有时间戳 s

从 UNIX 纪元时间戳解析它要容易得多:

 df['Date'] = pd.to_datetime(df['UNIX_Time'], unit='s')

10M 行 DF 的 时序

设置:

 In [26]: df = pd.DataFrame(pd.date_range('1970-01-01', freq='1T', periods=10**7), columns=['date'])

In [27]: df.shape
Out[27]: (10000000, 1)

In [28]: df['unix_ts'] = df['date'].astype(np.int64)//10**9

In [30]: df
Out[30]:
                       date    unix_ts
0       1970-01-01 00:00:00          0
1       1970-01-01 00:01:00         60
2       1970-01-01 00:02:00        120
3       1970-01-01 00:03:00        180
4       1970-01-01 00:04:00        240
5       1970-01-01 00:05:00        300
6       1970-01-01 00:06:00        360
7       1970-01-01 00:07:00        420
8       1970-01-01 00:08:00        480
9       1970-01-01 00:09:00        540
...                     ...        ...
9999990 1989-01-05 10:30:00  599999400
9999991 1989-01-05 10:31:00  599999460
9999992 1989-01-05 10:32:00  599999520
9999993 1989-01-05 10:33:00  599999580
9999994 1989-01-05 10:34:00  599999640
9999995 1989-01-05 10:35:00  599999700
9999996 1989-01-05 10:36:00  599999760
9999997 1989-01-05 10:37:00  599999820
9999998 1989-01-05 10:38:00  599999880
9999999 1989-01-05 10:39:00  599999940

[10000000 rows x 2 columns]

查看:

 In [31]: pd.to_datetime(df.unix_ts, unit='s')
Out[31]:
0         1970-01-01 00:00:00
1         1970-01-01 00:01:00
2         1970-01-01 00:02:00
3         1970-01-01 00:03:00
4         1970-01-01 00:04:00
5         1970-01-01 00:05:00
6         1970-01-01 00:06:00
7         1970-01-01 00:07:00
8         1970-01-01 00:08:00
9         1970-01-01 00:09:00
                  ...
9999990   1989-01-05 10:30:00
9999991   1989-01-05 10:31:00
9999992   1989-01-05 10:32:00
9999993   1989-01-05 10:33:00
9999994   1989-01-05 10:34:00
9999995   1989-01-05 10:35:00
9999996   1989-01-05 10:36:00
9999997   1989-01-05 10:37:00
9999998   1989-01-05 10:38:00
9999999   1989-01-05 10:39:00
Name: unix_ts, Length: 10000000, dtype: datetime64[ns]

定时:

 In [32]: %timeit pd.to_datetime(df.unix_ts, unit='s')
10 loops, best of 3: 156 ms per loop

结论: 我认为转换 10.000.000 行需要 156 毫秒并不算慢

原文由 MaxU - stop russian terror 发布,翻译遵循 CC BY-SA 3.0 许可协议

就像@Gianmario Spacagna 提到的日期时间更高,比如 2018 年使用 %V%G

 L1 = [43,44,51,2,5,12,52,53,1,2,5,52]
L2 = [2016,2016,2016,2017,2017,2017,2018,2018,2019,2019,2019,2019]
df = pd.DataFrame({"Week":L1,"Year":L2})

df['new'] = pd.to_datetime(df.Week.astype(str)+
                           df.Year.astype(str).add('-1') ,format='%V%G-%u')
print (df)
    Week  Year        new
0     43  2016 2016-10-24
1     44  2016 2016-10-31
2     51  2016 2016-12-19
3      2  2017 2017-01-09
4      5  2017 2017-01-30
5     12  2017 2017-03-20
6     52  2018 2018-12-24
7     53  2018 2018-12-31
8      1  2019 2018-12-31
9      2  2019 2019-01-07
10     5  2019 2019-01-28
11    52  2019 2019-12-23

原文由 jezrael 发布,翻译遵循 CC BY-SA 4.0 许可协议

撰写回答
你尚未登录,登录后可以
  • 和开发者交流问题的细节
  • 关注并接收问题和回答的更新提醒
  • 参与内容的编辑和改进,让解决方法与时俱进
推荐问题