我有一个包含 53987 行、32 列和 8 个类的不平衡数据集。我正在尝试执行多类分类。这是我的代码和相应的输出:
from sklearn.metrics import classification_report, accuracy_score
import xgboost
xgb_model = xgboost.XGBClassifier(num_class=7, learning_rate=0.1, num_iterations=1000, max_depth=10, feature_fraction=0.7,
scale_pos_weight=1.5, boosting='gbdt', metric='multiclass')
hr_pred = xgb_model.fit(x_train, y_train).predict(x_test)
print(classification_report(y_test, hr_pred))
[10:03:13] WARNING: C:/Users/Administrator/workspace/xgboost-win64_release_1.3.0/src/learner.cc:541:
Parameters: { boosting, feature_fraction, metric, num_iterations, scale_pos_weight } might not be used.
This may not be accurate due to some parameters are only used in language bindings but
passed down to XGBoost core. Or some parameters are not used but slip through this verification. Please open an issue if you find above cases.
[10:03:13] WARNING: C:/Users/Administrator/workspace/xgboost-win64_release_1.3.0/src/learner.cc:1061: Starting in XGBoost 1.3.0, the default evaluation metric used with the objective 'multi:softprob' was changed from 'merror' to 'mlogloss'. Explicitly set eval_metric if you'd like to restore the old behavior.
precision recall f1-score support
1.0 0.84 0.92 0.88 8783
2.0 0.78 0.80 0.79 4588
3.0 0.73 0.59 0.65 2109
4.0 1.00 0.33 0.50 3
5.0 0.42 0.06 0.11 205
6.0 0.60 0.12 0.20 197
7.0 0.79 0.44 0.57 143
8.0 0.74 0.30 0.42 169
accuracy 0.81 16197
macro avg 0.74 0.45 0.52 16197
weighted avg 0.80 0.81 0.80 16197
和
max_depth_list = [3,5,7,9,10,15,20,25,30]
for max_depth in max_depth_list:
xgb_model = xgboost.XGBClassifier(max_depth=max_depth, seed=777)
xgb_pred = xgb_model.fit(x_train, y_train).predict(x_test)
xgb_f1_score_micro = f1_score(y_test, xgb_pred, average='micro')
xgb_df = pd.DataFrame({'tree depth':max_depth_list,
'accuracy':xgb_f1_score_micro})
xgb_df
WARNING: C:/Users/Administrator/workspace/xgboost-win64_release_1.3.0/src/learner.cc:1061: Starting in XGBoost 1.3.0, the default evaluation metric used with the objective 'multi:softprob' was changed from 'merror' to 'mlogloss'. Explicitly set eval_metric if you'd like to restore the old behavior.
我该如何修复这些警告?
原文由 mineral 发布,翻译遵循 CC BY-SA 4.0 许可协议
如果您不想更改任何行为,只需将
eval_metric='mlogloss'
设置如下。从警告日志中,您将知道要设置什么
eval_metric
算法来消除警告。主要是mlogloss
或logloss
。