如何计算逻辑回归准确率

新手上路,请多包涵

我是机器学习和 python 编码的完全初学者,我的任务是从头开始编写逻辑回归代码,以了解引擎盖下发生的事情。到目前为止,我已经为假设函数、成本函数和梯度下降编码,然后为逻辑回归编码。然而,在打印精度编码时,我得到一个低输出 (0.69),它不会随着迭代次数的增加或学习率的改变而改变。我的问题是,我下面的准确度代码有问题吗?任何指向正确方向的帮助将不胜感激

X = data[['radius_mean', 'texture_mean', 'perimeter_mean',
   'area_mean', 'smoothness_mean', 'compactness_mean', 'concavity_mean',
   'concave points_mean', 'symmetry_mean', 'fractal_dimension_mean',
   'radius_se', 'texture_se', 'perimeter_se', 'area_se', 'smoothness_se',
   'compactness_se', 'concavity_se', 'concave points_se', 'symmetry_se',
   'fractal_dimension_se', 'radius_worst', 'texture_worst',
   'perimeter_worst', 'area_worst', 'smoothness_worst',
   'compactness_worst', 'concavity_worst', 'concave points_worst',
   'symmetry_worst', 'fractal_dimension_worst']]
X = np.array(X)
X = min_max_scaler.fit_transform(X)
Y = data["diagnosis"].map({'M':1,'B':0})
Y = np.array(Y)

X_train,X_test,Y_train,Y_test = train_test_split(X,Y,test_size=0.25)

X = data["diagnosis"].map(lambda x: float(x))

def Sigmoid(z):
    if z < 0:
        return 1 - 1/(1 + math.exp(z))
    else:
        return 1/(1 + math.exp(-z))

def Hypothesis(theta, x):
    z = 0
    for i in range(len(theta)):
        z += x[i]*theta[i]
    return Sigmoid(z)

def Cost_Function(X,Y,theta,m):
    sumOfErrors = 0
    for i in range(m):
        xi = X[i]
        hi = Hypothesis(theta,xi)
        error = Y[i] * math.log(hi if  hi >0 else 1)
        if Y[i] == 1:
            error = Y[i] * math.log(hi if  hi >0 else 1)
        elif Y[i] == 0:
            error = (1-Y[i]) * math.log(1-hi  if  1-hi >0 else 1)
        sumOfErrors += error

    constant = -1/m
    J = constant * sumOfErrors
    #print ('cost is: ', J )
    return J

def Cost_Function_Derivative(X,Y,theta,j,m,alpha):
    sumErrors = 0
    for i in range(m):
        xi = X[i]
        xij = xi[j]
        hi = Hypothesis(theta,X[i])
        error = (hi - Y[i])*xij
        sumErrors += error
    m = len(Y)
    constant = float(alpha)/float(m)
    J = constant * sumErrors
    return J

def Gradient_Descent(X,Y,theta,m,alpha):
    new_theta = []
    constant = alpha/m
    for j in range(len(theta)):
        CFDerivative = Cost_Function_Derivative(X,Y,theta,j,m,alpha)
        new_theta_value = theta[j] - CFDerivative
        new_theta.append(new_theta_value)
    return new_theta

def Accuracy(theta):
    correct = 0
    length = len(X_test, Hypothesis(X,theta))
    for i in range(length):
        prediction = round(Hypothesis(X[i],theta))
        answer = Y[i]
    if prediction == answer.all():
            correct += 1
    my_accuracy = (correct / length)*100
    print ('LR Accuracy %: ', my_accuracy)

def Logistic_Regression(X,Y,alpha,theta,num_iters):
    theta = np.zeros(X.shape[1])
    m = len(Y)
    for x in range(num_iters):
        new_theta = Gradient_Descent(X,Y,theta,m,alpha)
        theta = new_theta
        if x % 100 == 0:
            Cost_Function(X,Y,theta,m)
            print ('theta: ', theta)
            print ('cost: ', Cost_Function(X,Y,theta,m))
    Accuracy(theta)

initial_theta = [0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]
alpha = 0.0001
iterations = 1000
Logistic_Regression(X,Y,alpha,initial_theta,iterations)

这是使用来自威斯康星乳腺癌数据集 ( https://www.kaggle.com/uciml/breast-cancer-wisconsin-data ) 的数据,我在其中权衡了 30 个特征——尽管将这些特征更改为已知相关的特征也不会改变我的准确性。

原文由 DN1 发布,翻译遵循 CC BY-SA 4.0 许可协议

阅读 758
2 个回答

我不确定您是如何得出 --- 的值的 0.0001 alpha ,但我认为它太低了。将您的代码与癌症数据一起使用表明每次迭代成本都在降低——它只是在缓慢地进行。

当我将其提高到 0.5 时,成本仍然会降低,但处于更合理的水平。在 1000 次迭代后,它报告:

 cost:  0.23668000993020666

在修复 Accuracy 函数后,我在数据的测试段上获得了 92%。

您已安装 Numpy,如 X = np.array(X) 所示。您真的应该考虑将其用于您的操作。对于这样的工作,它将快 _几个数量级_。这是一个矢量化版本,可以立即给出结果而不是等待:

 import math
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
from sklearn.preprocessing import MinMaxScaler
from sklearn.model_selection import train_test_split

df = pd.read_csv("cancerdata.csv")
X = df.values[:,2:-1].astype('float64')
X = (X - np.mean(X, axis =0)) /  np.std(X, axis = 0)

## Add a bias column to the data
X = np.hstack([np.ones((X.shape[0], 1)),X])
X = MinMaxScaler().fit_transform(X)
Y = df["diagnosis"].map({'M':1,'B':0})
Y = np.array(Y)
X_train,X_test,Y_train,Y_test = train_test_split(X,Y,test_size=0.25)

def Sigmoid(z):
    return 1/(1 + np.exp(-z))

def Hypothesis(theta, x):
    return Sigmoid(x @ theta)

def Cost_Function(X,Y,theta,m):
    hi = Hypothesis(theta, X)
    _y = Y.reshape(-1, 1)
    J = 1/float(m) * np.sum(-_y * np.log(hi) - (1-_y) * np.log(1-hi))
    return J

def Cost_Function_Derivative(X,Y,theta,m,alpha):
    hi = Hypothesis(theta,X)
    _y = Y.reshape(-1, 1)
    J = alpha/float(m) * X.T @ (hi - _y)
    return J

def Gradient_Descent(X,Y,theta,m,alpha):
    new_theta = theta - Cost_Function_Derivative(X,Y,theta,m,alpha)
    return new_theta

def Accuracy(theta):
    correct = 0
    length = len(X_test)
    prediction = (Hypothesis(theta, X_test) > 0.5)
    _y = Y_test.reshape(-1, 1)
    correct = prediction == _y
    my_accuracy = (np.sum(correct) / length)*100
    print ('LR Accuracy %: ', my_accuracy)

def Logistic_Regression(X,Y,alpha,theta,num_iters):
    m = len(Y)
    for x in range(num_iters):
        new_theta = Gradient_Descent(X,Y,theta,m,alpha)
        theta = new_theta
        if x % 100 == 0:
            #print ('theta: ', theta)
            print ('cost: ', Cost_Function(X,Y,theta,m))
    Accuracy(theta)

ep = .012

initial_theta = np.random.rand(X_train.shape[1],1) * 2 * ep - ep
alpha = 0.5
iterations = 2000
Logistic_Regression(X_train,Y_train,alpha,initial_theta,iterations)

我想我可能有不同版本的 scikit,因为我更改了 MinMaxScaler 行以使其工作。结果是我可以在眨眼间进行 10K 次迭代,将模型应用于测试集的结果准确率约为 97%。

原文由 Mark 发布,翻译遵循 CC BY-SA 3.0 许可协议

Python 为我们提供了这个 scikit-learn 库,它使我们的工作更轻松,这对我有用:

 from sklearn.metrics import accuracy_score

y_pred = log.predict(x_test)

score =accuracy_score(y_test,y_pred)

原文由 valkyrie55 发布,翻译遵循 CC BY-SA 4.0 许可协议

撰写回答
你尚未登录,登录后可以
  • 和开发者交流问题的细节
  • 关注并接收问题和回答的更新提醒
  • 参与内容的编辑和改进,让解决方法与时俱进
推荐问题