如何一次性预处理 NLP 文本(小写、删除特殊字符、删除数字、删除电子邮件等)?

新手上路,请多包涵

如何使用 Python 一次性预处理 NLP 文本(小写、删除特殊字符、删除数字、删除电子邮件等)?

 Here are all the things I want to do to a Pandas dataframe in one pass in python:
1. Lowercase text
2. Remove whitespace
3. Remove numbers
4. Remove special characters
5. Remove emails
6. Remove stop words
7. Remove NAN
8. Remove weblinks
9. Expand contractions (if possible not necessary)
10. Tokenize

以下是我如何单独完成这一切:

     def preprocess(self, dataframe):

    self.log.info("In preprocess function.")

    dataframe1 = self.remove_nan(dataframe)
    dataframe2 = self.lowercase(dataframe1)
    dataframe3 = self.remove_whitespace(dataframe2)

    # Remove emails and websites before removing special characters
    dataframe4 = self.remove_emails(self, dataframe3)
    dataframe5 = self.remove_website_links(self, dataframe4)

    dataframe6 = self.remove_special_characters(dataframe5)
    dataframe7 - self.remove_numbers(dataframe6)
    self.remove_stop_words(dataframe8) # Doesn't return anything for now
    dataframe7 = self.tokenize(dataframe6)

    self.log.info(f"Sample of preprocessed data: {dataframe4.head()}")

    return dataframe7

def remove_nan(self, dataframe):
    """Pass in a dataframe to remove NAN from those columns."""
    return dataframe.dropna()

def lowercase(self, dataframe):
    logging.info("Converting dataframe to lowercase")
    lowercase_dataframe = dataframe.apply(lambda x: x.lower())
    return lowercase_dataframe

def remove_special_characters(self, dataframe):
    self.log.info("Removing special characters from dataframe")
    no_special_characters = dataframe.replace(r'[^A-Za-z0-9 ]+', '', regex=True)
    return no_special_characters

def remove_numbers(self, dataframe):
    self.log.info("Removing numbers from dataframe")
    removed_numbers = dataframe.str.replace(r'\d+','')
    return removed_numbers

def remove_whitespace(self, dataframe):
    self.log.info("Removing whitespace from dataframe")
    # replace more than 1 space with 1 space
    merged_spaces = dataframe.str.replace(r"\s\s+",' ')
    # delete beginning and trailing spaces
    trimmed_spaces = merged_spaces.apply(lambda x: x.str.strip())
    return trimmed_spaces

def remove_stop_words(self, dataframe):
    # TODO: An option to pass in a custom list of stopwords would be cool.
    set(stopwords.words('english'))

def remove_website_links(self, dataframe):
    self.log.info("Removing website links from dataframe")
    no_website_links = dataframe.str.replace(r"http\S+", "")
    return no_website_links

def tokenize(self, dataframe):
    tokenized_dataframe = dataframe.apply(lambda row: word_tokenize(row))
    return tokenized_dataframe

def remove_emails(self, dataframe):
    no_emails = dataframe.str.replace(r"\S*@\S*\s?")
    return no_emails

def expand_contractions(self, dataframe):
    # TODO: Not a priority right now. Come back to it later.
    return dataframe

原文由 pr338 发布,翻译遵循 CC BY-SA 4.0 许可协议

阅读 686
2 个回答

以下功能执行您提到的所有事情。

 import nltk
from nltk.tokenize import RegexpTokenizer
from nltk.stem import WordNetLemmatizer,PorterStemmer
from nltk.corpus import stopwords
import re
lemmatizer = WordNetLemmatizer()
stemmer = PorterStemmer()

 def preprocess(sentence):
    sentence=str(sentence)
    sentence = sentence.lower()
    sentence=sentence.replace('{html}',"")
    cleanr = re.compile('<.*?>')
    cleantext = re.sub(cleanr, '', sentence)
    rem_url=re.sub(r'http\S+', '',cleantext)
    rem_num = re.sub('[0-9]+', '', rem_url)
    tokenizer = RegexpTokenizer(r'\w+')
    tokens = tokenizer.tokenize(rem_num)
    filtered_words = [w for w in tokens if len(w) > 2 if not w in stopwords.words('english')]
    stem_words=[stemmer.stem(w) for w in filtered_words]
    lemma_words=[lemmatizer.lemmatize(w) for w in stem_words]
    return " ".join(filtered_words)

df['cleanText']=df['Text'].map(lambda s:preprocess(s))

原文由 Ravikiran 发布,翻译遵循 CC BY-SA 4.0 许可协议

我决定使用 Dask,它允许您在本地计算机上并行化 Python 任务,并且可以很好地与 Pandas、numpy 和 scikitlearn 配合使用: http ://docs.dask.org/en/latest/why.html

原文由 pr338 发布,翻译遵循 CC BY-SA 4.0 许可协议

撰写回答
你尚未登录,登录后可以
  • 和开发者交流问题的细节
  • 关注并接收问题和回答的更新提醒
  • 参与内容的编辑和改进,让解决方法与时俱进
推荐问题