Python 中的回归总结

新手上路,请多包涵

我对 Python 很陌生。我想得到像 R 中那样的逻辑回归的总结。我创建了变量 x_train 和 y_train,我正在尝试进行逻辑回归

import numpy as np
import matplotlib.pyplot as plt
from sklearn import linear_model

clf = linear_model.LogisticRegression(C=1e5)
clf.fit(x_train, y_train)

我得到的是:

 LogisticRegression(C=100000.0, class_weight=None, dual=False,
    fit_intercept=True, intercept_scaling=1, max_iter=100,
    multi_class='ovr', n_jobs=1, penalty='l2', random_state=None,
    solver='liblinear', tol=0.0001, verbose=0, warm_start=False)

我想要一个具有重要级别的摘要,R2 ecc。

原文由 Claudio 发布,翻译遵循 CC BY-SA 4.0 许可协议

阅读 392
1 个回答

我建议您查看 statsmodels 库。 Sk-learn 很棒(其他答案提供了获得 R2 和其他指标的方法),但是 statsmodels 提供了一个与你可能在 R 中使用的非常相似的回归总结。

举个例子:

 import statsmodels.api as sm
from sklearn.datasets import make_blobs

x, y = make_blobs(n_samples=50, n_features=2, cluster_std=5.0,
                  centers=[(0,0), (2,2)], shuffle=False, random_state=12)

logit_model = sm.Logit(y, sm.add_constant(x)).fit()
print logit_model.summary()

Optimization terminated successfully.
         Current function value: 0.620237
         Iterations 5
                           Logit Regression Results
==============================================================================
Dep. Variable:                      y   No. Observations:                   50
Model:                          Logit   Df Residuals:                       47
Method:                           MLE   Df Model:                            2
Date:                Wed, 28 Dec 2016   Pseudo R-squ.:                  0.1052
Time:                        12:58:10   Log-Likelihood:                -31.012
converged:                       True   LL-Null:                       -34.657
                                        LLR p-value:                   0.02611
==============================================================================
                 coef    std err          z      P>|z|      [95.0% Conf. Int.]
------------------------------------------------------------------------------
const         -0.0813      0.308     -0.264      0.792        -0.684     0.522
x1             0.1230      0.065      1.888      0.059        -0.005     0.251
x2             0.1104      0.060      1.827      0.068        -0.008     0.229
==============================================================================

如果你想添加正则化,而不是调用 .fit() 在 Logit 初始化之后你可以调用 .fit_regularized() 并传入一个 alpha 参数(正则化强度)。如果这样做,请记住 sk-learn 中的 C 参数实际上是正则化强度的 倒数

原文由 Nick Becker 发布,翻译遵循 CC BY-SA 3.0 许可协议

撰写回答
你尚未登录,登录后可以
  • 和开发者交流问题的细节
  • 关注并接收问题和回答的更新提醒
  • 参与内容的编辑和改进,让解决方法与时俱进
推荐问题