最终结果是e, 请问大佬, 能解释一下解题过程吗. 尤其是第二步 是如何化出来的?
按照我的理解 应该是[1, 0](1/2 x^2 . e^x + x)dx
啊。 求大佬解答。。。
找到答案了,谢谢各位大佬.
∫xe^xdx
=∫xde^x
=x*e^x-∫e^xdx
=x*e^x-e^x+C
解题思路:
∫xe^xdx=∫xd(e^x)这是因为利用了微分公式:d(e^x)=e^xdx
然后∫xd(e^x)=xe^x-∫e^xdx
这是利用分部积分公式:
∫udv=uv-∫vdu
最后得到xe^x-∫e^xdx=xe^x-e^x+C
最后有个常数C是因为导函数相同,原函数可以相差任意常数C,因为常数部分的导数是0。
xe^x - (e-1) + (e-1) = xe^x = e - 0 = e
第一步:对dy的积分,x+1看成常数,即
第二步,和的积分等积分的和